Coronal shock waves properties and solar energetic particles

Manon Jarry, IRAP, CNRS, Université Toulouse III–Paul Sabatier, Toulouse, France

with Alexis Rouillard, Illya Plotnikov, Athanasios Kouloumvakos

SERPENTINE Symposium — 28/06/2023

- Shock wave model
 - Model shock waves with 3D ellipsoidal shape
 - Analyse their geometry and kinematics
- New shocks
 - New tool for shock fitting
 - Example for the 5 september 2022 event
 - Observations timeline
 - Fitting results
- Shock analysis method —— for the same event as an example
 - Reconstruct the magnetic connectivity of spacecrafts
 - > MHD shock properties
 - Possible links with SEPs : preliminary results
- Conclusion

- Shock wave model
 - Model shock waves with 3D ellipsoidal shape
 - > Analyse their geometry and kinematics
- New shocks
 - New tool for shock fitting
 - Example for the 5 september 2022 event
 - Observations timeline
 - Fitting results
- Shock analysis method —— for the same event as an example
 - Reconstruct the magnetic connectivity of spacecrafts
 - > MHD shock properties
 - Possible links with SEPs : preliminary results
- Conclusion

4

Context : Some coronal mass ejections (CMEs) produce shock waves in the solar corona that can lead to solar energetic particle (SEP) events.

Goal : Better understand the shock contribution in the production of SEPs

Steps:

- Shock wave model
- Tool for new shocks
- Magnetic connectivity
- MHD shocks properties
- Possible links with SEPs characteristics

Shock wave model

- Model shock waves with 3D ellipsoidal shape
- Analyse their geometry and kinematics
- New shocks
 - New tool for shock fitting
 - Example for the 5 september 2022 event
 - Observations timeline
 - Fitting results
- Shock analysis method —— for the same event as an example
 - Reconstruct the magnetic connectivity of spacecrafts
 - > MHD shock properties
 - Possible links with SEPs : preliminary results
- Conclusion

Shock wave model

> Model shock waves with 3D ellipsoidal shape

Model shock waves with 3D ellipsoidal shape

Catalog of shock waves [Kouloumvakos et al. (2019)]

- Selection of 33 CMEs shock waves
- Reconstruction of their time-evolving 3D ellipsoidal shape

> Analyse their geometry and kinematics

> Analyse their geometry and kinematics

Results between 2 and 25 solar radius : [Jarry et al. (2023)]

a~b~c

 $\langle b/a \rangle = 1.03 \pm 0.08$ 25(a) $\begin{array}{|c|c|} \bullet & \langle b/a \rangle \\ -- & b = 1.02 * a \end{array}$ 20-- b = a $\begin{bmatrix} 0 \\ \Im \end{bmatrix}_{12}$ -a 10 10 155200 $a [R_{\odot}]$ 00 8 0.70.8 0.91.1 1.21.31.41 $\langle b/a \rangle$

> Analyse their geometry and kinematics

Results between 2 and 25 solar radius : [Jarry et al. (2023)]

 $\langle b/a \rangle = 1.03 \pm 0.08$ 25(a) ⟨b/a⟩ --b = 1.02 * a20- - b = a $\begin{bmatrix} \odot \\ \mathcal{U} \end{bmatrix}_{15}$ a 10 10 152050 $a [R_{\odot}]$ 00 8 0.70.91.1 1.21.31.40.8

 $\langle b/a \rangle$

 $\langle V_R/V_L \rangle = 1.44 \pm 0.22$

- Shock wave model
 - Model shock waves with 3D ellipsoidal shape
 - Analyse their geometry and kinematics

New shocks

- New tool for shock fitting
- Example for the 5 september 2022 event
 - Observations timeline
 - Fitting results
- Shock analysis method —— for the same event as an example
 - Reconstruct the magnetic connectivity of spacecrafts
 - > MHD shock properties
 - Possible links with SEPs : preliminary results
- Conclusion

New shocks *

- New tool for shock fitting \succ
 - Matlab tool _
 - originally created to fit _ flux ropes but now adapted to fit shocks
 - added the possibility of fitting WHISPR data

	•				UIF	Figure								
e He	lp													
IG	PROP MODEL	FR FITTING	SHOCK FITTING	NATURE	TIME PLO	OPT OPT	IMISATION							
						2) S/C or Viewpoint Selection								
		a a d a a d D												
i) Load and Prepare images														
	Loading Date	(UTC):	05-Sep-2022	05-Sep-2022			STA EUVI CORI COR2 HI							
						PSP SoLO)) Eui (MET	IS	HI	ISPR2	ALL		
			3]	Download	d an	d Sele	ct Imag	es						
Dov	wload/Images Do	owload/FITS	< C2 C3	EUVIA EUVI	в	COR1A	COR1B	COR2A	COR2B	HI1A	HI1B	WISPR1	W	
Che	eck Directories	Load					List of Im	nag						
Results			psp_L3_wispr_20220905T154516_V1_1211.png											
			psp_L3_wispr_20220905T160016_V1_1211.png											
			psp_L3_wispr_202	20905T161516_V	1_1211	.png								
			psp_L3_wispr_202	220905T163016_V	1_1211	.png								
			psp_L3_wispr_202	2209051164516_V	1_1211	.png								
			psp_L3_wispr_202	209051170016_V	1_1211	.png								
			psp_L3_wispr_202	209051171510_V	1 1211	.png								
			psp_L3_wispr_202	20905T174516 V	1 1211	ng								
			psp_L3_wispr_202	20905T180016 V	1 1211	l.ong								
			psp L3 wispr 202	20905T181516 V	1 1211	.pna								
			psp_L3_wispr_202	20905T183016_V	1_1211	.png								
mag	ge plotting prope	rties		Other plotting properties										
Mar	Helion	projective sphere	Thomson s	sphere	Co	ontrast	Obs	server POS	5 Th	omson sph	ere	Stars (HI	P)	
map	Show	Hide	Show C	Hide			Show	\bigcirc	Hide Shov		Hide	Show C) Hid	
lux	rope plotting pro	perties												
	enveloppe	fiel	d lines	lso surface		flux surf	ace							
	~		~			~			4) D	isplay	/refre	esh ima	ge	
Sho	w 💭 Hide	Show	Hide no	ne	Sh	iow C	Hide							
			le	vel: 0	rac	dius (r/a)=	0.5							
_													1	

- > Example for the 5 september 2022 event
 - Observations timeline

fits

- Shock wave model
 - Model shock waves with 3D ellipsoidal shape
 - > Analyse their geometry and kinematics
- New shocks
 - New tool for shock fitting
 - Example for the 5 september 2022 event
 - Observations timeline
 - Fitting results

Shock analysis method \longrightarrow for the same event as an example

- Reconstruct the magnetic connectivity of spacecrafts
- > MHD shock properties
- Possible links with SEPs : preliminary results
- Conclusion

exemple for the 5 Sept 2022 CME event

Reconstruct the magnetic connectivity of spacecrafts

exemple for the 5 Sept 2022 CME event

> MHD shock properties

Magnetic Connectivity Tool

Add the reconstructed shock

> MHD shock properties

Determine its MHD properties

> MHD shock properties

- Shock wave model
 - Model shock waves with 3D ellipsoidal shape
 - Analyse their geometry and kinematics
- New shocks
 - New tool for shock fitting
 - Example for the 5 september 2022 event
 - Observations timeline
 - Fitting results
- Shock analysis method —— for the same event as an example
 - Reconstruct the magnetic connectivity of spacecrafts
 - > MHD shock properties
 - Possible links with SEPs : preliminary results

Conclusion

- On shock wave geometry and kinematics :
 - Shock waves are spherical during their propagation in the interplanetary medium from 2 to 25 solar radius
 - > Their radial expansion is 1.45 faster than their lateral expansion
- Future work :
 - ➤ on shock MHD :
 - refine these preliminary results
 - study new shocks that occurred after 2020 (with PSP and SolO)
 - > on links between SEPs and shock properties
 - study different energies, type of particles, compositions, ...
 - test particle transport codes by including shocks and compare results with observations

Thank you for your attention